Cu $K\alpha$ radiation

Cell parameters from 25

 $0.30 \times 0.22 \times 0.17$ mm

 $\lambda = 1.54184 \text{ Å}$

reflections

 $\mu = 4.47 \text{ mm}^{-1}$

 $\theta = 19 - 29^{\circ}$

T = 297 K

Colorless

Prism

Crystal data

 $C_{16}H_{10}Cl_2$ $M_r = 273.16$ Monoclinic $P2_{1}/c$ a = 11.217(1) Å b = 8.1008(3) Å c = 14,4403 (8) Å $\beta = 104.34(1)^{\circ}$ V = 1271.3 (3) Å³ Z = 4 $D_x = 1.427 \text{ Mg m}^{-3}$ D_m not measured

Data collection Ennet Maning CAD 4

Enraf–Nonius CAD-4	2326 reflections with
diffractometer	$I > \sigma(I)$
$\theta/2\theta$ scans	$R_{\rm int} = 0.012$
Absorption correction:	$\theta_{\rm max} = 75^{\circ}$
ψ scan (North, Phillips	$h = 0 \rightarrow 14$
& Mathews, 1968)	$k = 0 \rightarrow 9$
$T_{\rm min} = 0.36, T_{\rm max} = 0.47$	$l = -18 \rightarrow 17$
2841 measured reflections	3 standard reflections
2532 independent reflections	frequency: 120 min
	intensity decay: 3.6%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.039	$\Delta \rho_{\rm min}$ = -0.14 e Å ⁻³
wR = 0.059	Extinction correction:
S = 2.301	isotropic (Zachariasen,
2326 reflections	1963)
204 parameters	Extinction coefficient:
All H atoms refined	$3.9(2) \times 10^{-6}$
$w = 4F_o^2/[\sigma^2(F_o^2)]$	Scattering factors from Inter-
$+ 0.0009 F_o^4$]	national Tables for X-ray
$(\Delta/\sigma)_{\rm max} = 0.023$	Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å, °)

	-		
Ci1—C1	1.741 (2)	C10-C14	1.520 (3)
C12—C8	1.744 (2)	C10-C16	1.529 (2)
C9C11	1.528 (2)	C11—C12	1.397 (2)
C9—C13	1.520 (3)	C13—C14	1.399 (2)
C9-C15	1.528 (2)	C15—C16	1.312 (3)
C10-C12	1.521 (2)		
C11-C9-C13	104.5 (1)	C10-C12-C11	112.5 (1)
C11-C9-C15	105.8(1)	C8-C13-C9	128.4 (2)
C13-C9-C15	105.6(1)	C8-C13-C14	118.7 (2)
C12-C10-C14	105.4 (1)	C9-C13-C14	112.9 (2)
C14-C10-C16	106.0(1)	C5-C14-C10	126.7 (2)
C1-C11-C9	128.5 (2)	C5-C14-C13	120.9 (2)
C1-C11-C12	118.7 (2)	C10-C14-C13	112.5 (2)
C9-C11-C12	112.8 (1)	C9-C15-C16	114.7 (2)
C4-C12-C10	126.5 (2)	C10-C16-C15	113.9 (1)
C4-C12-C11	121.1(1)		

C-H distances are in the range 0.86 (2)-0.99 (2) Å, while B_{iso} values for H atoms are in the range 3.3 (4)–7.1 (7) \dot{A}^2 .

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: LSFM in MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIFIN in MolEN.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1334). Services for accessing these data are described at the back of the journal.

References

- Benites, M. R., Fronczek, F. R. & Maverick, A. W. (1996). J. Organomet. Chem. 516, 17-24.
- Benites, M. R., Maverick, A. W. & Fronczek, F. R. (1996). Acta Cryst. C52, 647-648.
- Dellaca, R. J., Penfold, B. R. & Robinson, W. T. (1969). Acta Cryst. B25, 1589-1594.
- Desvergne, J.-P., Gaultier, J. & Hauw, C. (1970). C. R. Acad. Sci. Ser. C, 271, 1298-1300.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Oliver, S. W., Fallon, G. D. & Smith, T. D. (1986). Acta Cryst. C42, 1047-1048.
- Paquette, L. A., Moerck, R. E., Harirchian, B. & Magnus, P. D. (1978). J. Am. Chem. Soc. 100, 1597-1599.
- Pokkuluri, P. R., Scheffer J. R. & Trotter, J. (1993). Acta Cryst. B49, 107-116.
- Rettig, S. J., Scheffer, J. R., Trotter, J. & Yang, J. (1995). Acta Cryst. C51, 2685-2687.
- Trotter, J. & Wireko, F. C. (1990). Acta Cryst. C46, 103-106.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1997). C53, 1335-1337

1.1.1.4.4.4-Hexachloro-1,4-disilabutane

NORBERT W. MITZEL, JÜRGEN RIEDE AND HUBERT SCHMIDBAUR

Anorganisch-Chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany. E-mail: n.w.mitzel@lrz.tu-muenchen.de

(Received 26 March 1997; accepted 17 April 1997)

Abstract

Molecules of the title compound, C₂H₄Cl₆Si₂, have a crystallographic centre of inversion and adopt a trans conformation in the crystal. Important bond lengths are C—C 1.536(3), Si—C 1.8469(15), and Si—Cl 2.0229(6), 2.0225(6) and 2.0283(6) Å. The Cl atom *trans* to the C—C bond is tilted towards the C atom. There are no important intermolecular interactions.

Comment

We have recently reported the gas-phase and solidstate structures of 1,4-disilabutane and 1,5-disilapentane (Mitzel, Smart, Blake, Robertson & Rankin, 1996) and the crystal structure of 1,4-dibromo-1,4-disilabutane (Mitzel, Riede & Schmidbaur, 1996). Simple carbosilane molecules and their halogen derivatives are currently being probed as single-source precursors for the epitaxic growth of β -SiC layers by chemical vapour deposition (Kunstmann et al., 1995). 1,4-Disilabutane and 1,5disilapentane and their α, ω -dibromo derivatives tend to eliminate ethene and propene, respectively, in the lowtemperature regime of the deposition experiments with formation of Si layers, whereas in the high-temperature regime SiC is formed without loss of the carbon units. These observations led us to determine the molecular structures of these and related compounds in order to provide a structural basis for a discussion of the decomposition chemistry. An investigation of methyltrichlorosilane and 1,1,1,4,4,4-hexachloro-1,4-disilabutane, (1), as precursors has now been commenced and the molecular structures of these compounds are being determined in order to make a parallel comparison with the structure and decomposition chemistry of the corresponding carbosilanes and their bromo derivatives.

$$Cl_{3}Si \underbrace{C}_{H_{2}} C^{H_{2}} SiCl_{3}$$

In the crystal, 1,1,1,4,4,4-hexachloro-1,4-disilabutane has a crystallographic centre of inversion (Fig. 1). 1,4-Dibromo-1,4-disilabutane (Mitzel, Riede & Schmidbaur, 1996), as well as other open-chain molecules with a symmetrical substitution pattern at the Si—C—C—Si unit that have been studied by crystallographic methods (Shibayeva, Atovmyan, Rozenberg & Stryukov, 1983; Tacke, Niedner, Frohnecke, Ernst & Sheldrick, 1980; Ovchinnikov, Shklover, Struchkov, Polyakov & Guselnikov, 1985), also have crystallographic inversion centres. Compound (1) also has almost perfect 2/m symmetry, reflecting its ideal all-staggered conformation, which is not distorted by intermolecular forces in the crystal.

The C—C distance in (1) is very similar to those in the related compounds mentioned above, as is the Si— C distance. The C—C—Si angle also is equal to that in 1,4-dibromo-1,4-disilabutane $[113.6 (4)^{\circ}]$ within the limits of error.

The SiCl₃ group is tilted in a way that two C— Si—Cl angles are larger than the third [Cl2] by about

Fig. 1. A view of one molecule of (1) with the atom-numbering scheme. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as spheres of arbitrary radii. The crystallographic centre of inversion is located in the middle of the C—C bond.

 1.6° . The two Cl atoms Cl1 and Cl3, which are bent away from the ethanediyl bridge, have slightly shorter Si—Cl distances (2.023 Å on average) than the Si—Cl2 distance [2.0283 (6) Å].

There are no important intermolecular interactions. The shortest such $CI \cdots CI$ non-bonded distances are 3.52 Å, which is about the sum of the van der Waals radii (3.62 Å; Emsley, 1991). The shortest intermolecular Si \cdots Cl distance is 4.30 Å, indicating the absence of any $CI \cdots$ Si donor-acceptor interaction comparable with the Si \cdots Br interactions observed in 1,4-dibromo-1,4-disilabutane.

Experimental

1,1,1,4,4,4-Hexachloro-1,4-disilabutane, (1), was prepared by a hydrosilylation reaction from vinyltrichlorosilane and trichlorosilane (Mitzel *et al.*, 1997). Crystals were grown by slowly cooling the melt to 290 K. For the X-ray diffraction experiment, one of these was transferred into a glass capillary and sealed under an atmosphere of dry argon at 223 K.

Crystal data

$C_2H_4Cl_6Si_2$ $M_r = 296.93$ Monoclinic $P2_1/n$ a = 6.231 (1) Å	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 96 reflections $\theta = 18-21^{\circ}$ $\alpha = 1700$ mm ⁻¹
b = 9.44/(1) A c = 9.394(1) Å	$\mu = 1.700 \text{ mm}$ T = 205 (2) K
$\beta = 92320(10)^{\circ}$	Block
$V = 552.52 (12) Å^3$	$0.35 \times 0.35 \times 0.30$ mm
Z = 2	Colourless
$D_{\rm x} = 1.785 {\rm Mg} {\rm m}^{-3}$	
D_m not measured	
Data collection	
Enraf–Nonius CAD-4	1085 reflections with
diffractometer	$l > 2\sigma(l)$
ω scans	$R_{\rm int} = 0.013$
Absorption correction:	$\theta_{\rm max} = 26.94^{\circ}$
ψ scans (North, Phillips	$h = -7 \rightarrow 7$
& Mathews, 1968)	$k = 0 \rightarrow 12$
$T_{\rm min} = 0.533, T_{\rm max} = 0.599$	$l = 0 \rightarrow 11$

1259 measured reflections 1190 independent reflections	3 standard reflections frequency: 60 min intensity decay: none
Refinement	

Refinement on F^2	$\Delta \rho_{\rm max} = 0.310 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.019$	$\Delta \rho_{\rm min} = -0.171 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.062$	Extinction correction:
S = 1.120	SHELXL93 (Sheldrick,
1181 reflections	1993)
55 parameters	Extinction coefficient:
All H atoms refined	0.058 (3)
$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2]$	Scattering factors from
+ 0.1264 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = 0.001$	

Table 1. Selected geometric parameters (Å, °)

Si1C1 C1C1 ⁱ Si1Cl1	1.8469 (15) 1.536 (3) 2.0229 (6)	Si1Cl2 Si1Cl3	2.0283 (6) 2.0225 (6)
C1—Si1—Cl1 C1—Si1—Cl2 C1—Si1—Cl3 Cl1—Si1—Cl2	111.44 (6) 109.80 (5) 111.27 (6) 108.55 (3)	C11—Si1—C13 C12—Si1—C13 C1 ⁱ —C1—Si1	107.17 (3) 108.50 (3) 113.93 (13)
$C11 - Si1 - C1 - C1^{3}$ $C12 - Si1 - C1 - C1^{3}$	-61.7 (2) 177.96 (14)	Cl3—Si1—C1—C1'	57.8 (2)
Symmetry code: (i) $-x, 2 - y, 1 - z$.			

Program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 1992). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *SHELXTL/PC*. Software used to prepare material for publication: *SHELXL*93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1006). Services for accessing these data are described at the back of the journal.

References

- Emsley, J. (1991). In The Elements. Oxford: Clarendon Press.
- Kunstmann, T., Angerer, H., Knecht, J., Vepřek, S., Mitzel, N. W. & Schmidbaur, H. (1995). Chem. Mater. 7, 1675–1679.
- Mitzel, N. W., Riede, J. & Schmidbaur, H. (1996). Acta Cryst. C52, 980-982.
- Mitzel, N. W., Schmidbaur, H., Rankin, D. W. H., Smart, B. A., Hofmann, M. & Schleyer, P. v. R. (1997). *Inorg. Chem.* In the press.
- Mitzel, N. W., Smart, B. A., Blake, A. J., Robertson, H. E. & Rankin, D. W. H. (1996). J. Phys. Chem. 100, 12280–12287.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Ovchinnikov, Y. E., Shklover, V. E., Struchkov, Y. T., Polyakov, Y. P. & Guselnikov, L. E. (1985). *Acta Cryst.* C41, 1055–1057.
- Sheldrick, G. M. (1992). SHELXTL/PC. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Shibayeva, R. P., Atovmyan, L. O., Rozenberg, L. P. & Stryukov, V. B. (1983). Dokl. Akad. Nauk SSSR, 210, 833–836.
- Tacke, R., Niedner, R., Frohnecke, J., Ernst, L. & Sheldrick, W. S. (1980). Justus Liebigs Ann. Chem. pp. 1859–1876.

Acta Cryst. (1997). C53, 1337-1341

1-Aryl-1*H*,3*H*-thiazolo[3,4-*a*]benzimidazole Derivatives

GIUSEPPE BRUNO,^a Alba Chimirri,^b Anna Maria Monforte,^b Francesco Nicoló^a and Rosario Scopelliti^a

^aDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, 98166 Vill. Sant'Agata, Messina, Italy, and ^bDipartimento Farmaco-Chimico, Universitá di Messina, 98168 Viale Annunziata, Messina, Italy. E-mail: bruno@medif0.unime.it

(Received 31 January 1997; accepted 1 April 1997)

Abstract

The structural features of some 1-aryl-1*H*,3*H*-thiazolo-[3,4-*a*]benzimidazoles active against human immunodefiency virus (HIV) are reported. The diffractometric analysis reveals that the title compounds, 1-(2,4-difluorophenyl)-1*H*,3*H*-thiazolo[3,4-*a*]benzimidazole, $C_{15}H_{10}F_2N_2S$, 1-(2,6-dichlorophenyl)-1*H*,3*H*-thiazolo[3,4-*a*]benzimidazole, $C_{15}H_{10}Cl_2N_2S$, and 1-(2chloro-6-fluorophenyl)-1*H*,3*H*-thiazolo[3,4-*a*]benzimidazole, $C_{15}H_{10}ClFN_2S$, all adopt a butterfly-like conformation which appears to be particularly important for the inhibition of HIV-1 reverse transcriptase (RT), an enzyme which plays a key role in the viral life-cycle.

Comment

In previous papers, we reported the synthesis and evaluation of anti-HIV activity of a series of 1H,3H-thiazolo[3,4-a]benzimidazole derivatives (Chimirri, Grasso, Monforte, Monforte & Zappalá, 1991; Monforte et al., 1993; Bruno, Chimirri et al., 1996; Chimirri et al., 1996; Bruno, Monforte, Nicoló & Scopelliti, 1996). Some of the studied compounds exhibited significant activity (Chimirri et al., 1991, 1996) and in particular the 1-(2,6-diffuorophenyl)- derivative (TBZ) was found to be a highly potent non-nucleoside HIV-1 reverse transciptase (RT) inhibitor (NNRTI) (Schultz et al., 1992; Buckheit et al., 1993; Bruno, Chimirri et al., 1996). It was recently ascertained (Scafer et al., 1993; Ding et al., 1995) that some structural features, such as two systems arranged in a butterfly-like conformation and a hydrogen-bond acceptor in an appropriate position, are necessary for the inhibition of the RT enzyme. On this basis, it is very important to determine the geometry of thiazolobenzimidazole derivatives, a new class of anti-HIV agents, in order to clarify which molecular requirements are common to NNRTIs. As part of a broader structural and pharmacological study of these compounds, we report here the results of the X-ray